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ABsTrACT. We present new results and simple short proofs for known theo-

rems about generalized centrosymmetric matrices and generalized skew-centrosymmetric
(centroskew) matrices. We also make a comparison between the identity matrix

and a nontrivial involutory matrix K by studying the eigensystem of K + M,

where M is a structured matrix, with the goal of expressing this system en-

tirely in terms of the corresponding eigensystem of M. Also, properties of

some parametric families of the form K + pM are studied.
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1. INTRODUCTION

Let K be an n x n nontrivial (i.e., K # =+I) involutory matrix, x an n x 1
vector, and A an n x n matrix. A is called K-centrosymmetric (or K-symmetric)
if AK = KA and K-skew-centrosymmetric (or K-skew-symmetric) if AK = —K A4;
z is called K-symmetric if Kz = x and K-skew-symmetric if Kz = —z. K-
centrosymmetric and K-skew-centrosymmetric matrices were studied in [5, 6, 7].

Properties of the sum of two matrices have been studied by many researchers in
many contexts with the objective of finding connections between the eigensystem
of the summands and the eigensystem of the sum. In particular, the eigenvalues of
the sum of the identity matrix I and another matrix is one of the first sums that
one encounters in elementary linear algebra. A very useful relative of the identity
is the counteridentity .J, which is obtained from the identity by reversing the order
of its columns. The identity and the counteridentity are both involutory matrices.
The question we pose is: if K is a nontrivial involutory matrix, how closely is
the eigensystem of the sum K + M related to that of the matrix M? With no
restrictions on M, it appears that little can be said about the connections between
these eigensystems. However, we show that if M is K-centrosymmetric or K-skew-
centrosymmetric, then the question has a simple explicit answer. One consequence
of our analysis is the construction of an analytic homotopy H(t), 0 <t < 1, in the
space of diagonalizable matrices, between K = H(0) and any real skew-symmetric
K-skew-centrosymmetric matrix S = H(1) such that H(¢) has only real or pure
imaginary eigenvalues for 0 < ¢ < 1. In some proofs we will depend on the fact [6]
that eigenvectors of K-centrosymmetric matrices can be chosen to be K-symmetric
or K-skew-symmetric, which implies if A is a K-centrosymmetric matrix with w
linearly independent eigenvectors, then w linearly independent eigenvectors of A
can be chosen to be K-symmetric or K-skew-symmetric. We present a simple
short proof of this fact. We present simple short proofs of two propositions in
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[5] when the matrices involved are over the field of real numbers or the field of
complex numbers. We also present new results about K-centrosymmetric and K-
skew-centrosymmetric matrices. In the special case when K = J, more results can
be derived (see [1, 2, 3, 4]). We note that the results in this paper are generalizations
of results about centrosymmetric and skew-centrosymmetric matrices we published
in [1, 2, 3, 4].

Throughout this paper, we denote the identity matrix by I, the counteridentity
matrix by J, an n x n nontrivial involutory matrix by K, the set of all n x 1 vectors
that are either K-symmetric or K-skew-symmetric by £, and the transpose of a
matrix A by A”. Unless we say otherwise, all matrices in the paper will be n x n.
We denote \/—1 by i. A pure imaginary number refers to a number of the form
bi, where b is any real number (including zero). If z is an n x 1 vector, then we
let xT represent the K-symmetric part of z; i.e. 2™ = J(z + Kz), and we let
2~ represent the K-skew-symmetric part of z; i.e. 2~ = 1(2 — Kz). Note that
x =zt + 2. We denote the multiset of all eigenvalues of A by evals(A4). If X is an
eigenvalue of A with a corresponding eigenvector z, we say (A, z) is an eigenpair
of A. As it is the case in [5], if C and D are multisets, we write C' = £D if the
elements of C' are the same as those of D up to sign, and we write C' = iD if
C = {id | d € D}. Such definitions respect multiplicity. If A is an n x n matrix, we
let A, represent the K-centrosymmetric part of A; i.e. A, = $(A+ KAK), and we
let A, represent the K-skew-centrosymmetric part of A;i.e. Ag = %(A — KAK).
Note that A = A, + Ag.. Finally, we note that the matrices we consider are over
the field of complex numbers (or the field of real numbers).

2. K-SKEW-CENTROSYMMETRIC MATRICES AND K-CENTROSYMMETRIC

MATRICES

It is known [6] that if H is a K-centrosymmetric matrix with + linearly indepen-
dent eigenvectors, then v linearly independent eigenvectors of H can be chosen to
be K-symmetric or K-skew-symmetric. The following theorem presents a simple
short proof of this fact.

Theorem 2.1. Let H be a K-centrosymmetric matriz. If (A, x) is an eigenpair of
H, then either (\,zT) or (\,27) is an eigenpair of H.

Proof.
(2.1) Hzt + Hz™ =Xzt + )\~

Multiplying by K yields

(2.2) Hzt — Hx™ =Xt — Xz~
Adding Equations 2.1 and 2.2 yields

(2.3) Hxt = \xt.

Subtracting Equation 2.2 from Equation 2.1 yields

(2.4) Hx™ =Xa™.
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Note that the only vector that is both K-symmetric and K-skew-symmetric is the
zero vector, and note also that + and 2~ cannot be both zero because x = 2T +2~
is an eigenvector. Thus, either ¥ or ™ is an eigenvector of H corresponding to
A O

Corollary 2.2. If H is a K-centrosymmetric matriz with v linearly independent
eigenvectors, then v linearly independent eigenvectors of H can be chosen from &.

Proof. Note that for every eigenvalue A of H, we can choose an eigenvector that
is either K-symmetric or K-skew-symmetric. Thus, 7 eigenvectors of H can be
chosen to be K-symmetric or K-skew-symmetric. O

Theorem 2.3. Let H be an n x n K-centrosymmetric matriz and let v be the
number of linearly independent eigenvectors of H. Then, H and KH share ~y
linearly independent eigenvectors, and X\ is an eigenvalue of H if and only if A or
—\ is an eigenvalue of KH.

Proof. ~ linearly independent eigenvectors of H can be chosen to be K-symmetric
or K-skew-symmetric. Since K H is also K-centrosymmetric, then the same thing
holds for K H. Now it is easy to prove that if z is K-symmetric, then (), z) is an
eigenpair of H if and only if (A, z) is an eigenpair of K H. Also, it is easy to prove
that if z is skew-symmetric, then (), 2) is an eigenpair of H if and only if (=X, 2)
is an eigenpair of K H. O

Now we present simple short proofs for Propositions 3.1 and 4.1 of [5] when
the matrices involved are over the field of real numbers or the field of complex
numbers. When K = J, the results state the effect of reversing the rows/columns of
centrosymmetric matrices and skew-centrosymmetric matrices on their eigenvalues.
Note that unlike Proposition 3.1 of [5], our previous theorem mentions not only
eigenvalues, but also eigenvectors.

Corollary 2.4. Let H be a K -centrosymmetric matriz. Then evals(KH) = t+evals(H).

The above theorem and corollary hold also for the case when K H is replaced by
HK (note that KH = HK).

Theorem 2.5. Let S be a K-skew-centrosymmetric matriz. Then evals(KS) =
ievals(S).

Proof. Note first that (KS)? = —S2%, and KS is K-skew-centrosymmetric. Then
recall that p is an eigenvalue of A? if and only if +,/ is an eigenvalue of A. Also
recall that the eigenvalues of K-skew-centrosymmetric matrices occur in pairs; i.e.
if A is an eigenvalue of such a matrix, then so is —A. Moreover, A and —\ have the
same multiplicity. It follows that A is an eigenvalue of S of multiplicity m if and
only if ¢\ is an eigenvalue of K S of multiplicity m. O

The above theorem holds also for the case when K S is replaced by SK (note
that K.S = —SK). We note also that the converse of the previous theorem and the
converse of the previous corollary hold in the case when H, S, and K are Hermitian.
A nice proof of that can be found in [7].

Theorem 2.6. Let M be an n x n matriz and let (A, x) be an eigenpair of M.
Then

(a) (\,xt —x7) is an eigenpair of M. — M, = KMK.
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(b) If x is K-symmetric, then (\,zT) is an eigenpair of M. and (0,z7) is an
eigenpair of M.
(¢) If © is K-skew-symmetric, then (\,x7) is an eigenpair of M. and (0,27) is an
eigenpair of M.
(d) If M is K-skew-centrosymmetric and nonsingular, and x is not K-symmetric,
then (\2,27) is an eigenpair of M?>.
(e) If M is K -skew-centrosymmetric and nonsingular, and x is not K -skew-symmetric,
then (\2,z7) is an eigenpair of M?>.
Proof. Mz = Az if and only if
M.x™ 4+ Moo~ + Mgex™ + Mgex™ = Mot + \a™
and (after multiplying by K)
Mt — Moa™ — Myexm + Moex™ = dat — Az~

Part (a) follows from the second equation. Note that 2™ — 2~ # 0, because = # 0.
Now if x is K-symmetric, then £~ = 0 and the first two equations become

Mo + Mgx™ = Xz,

Mot — Mgex™ = Xz
Adding and subtracting the above two equations yields Part (b).
Now if x is K-skew-symmetric, then z* = 0 and the first two equations become
M.z~ + Mg.x™ = Az,

—M.x™ + Mgx™ ==Xz

Adding and subtracting the above two equations yields Part (c).
Now if M is K-skew-centrosymmetric , then M, = 0 and the first two equations
become

Mgzt + Mgz~ = o™ + Az~
Mgzt + Mz~ =™ — Az
Adding and subtracting the above two equations yields
Moz~ = M,

Mgzt =z~
Thus,
Mo Moz~ = MMzt = N2z
O

Note that the case when M is K-centrosymmetric was handled in Theorem 2.1.

It is known that if A # 0 is an eigenvalue of a K-skew-centrosymmetric matrix,
then A cannot have a K-symmetric or a K-skew-symmetric eigenvector. But, if
the matrix is also real skew-symmetric and K is real, then we have the following
theorem.

Theorem 2.7. Let K be an n X n real involutory matriz, S an n X n real skew-
symmetric K -skew-centrosymmetric matriz, and (A # 0,z + iy) an eigenpair of S,
where x and y are real n-vectors. Then, v is K-symmetric (respectively K -skew-
symmetric) if and only if y is K-skew-symmetric (respectively K-symmetric).
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Proof. Let (A = bi,z = x + iy) be an eigenpair of S, where z and y are real, and
assume b # 0. Then

(2.5) Sz +iSy = —by + ibx.

This implies

(2.6) KSz+iKSy=ibKx — bKy.
Thus,

(2.7) —SKz —iSKy = ibKx — bKy.
Now if x is K-symmetric, then

(2.8) —Sx —iSKy = ibx — bKy.
Now add Equations (2.5) and (2.8), to get

(2.9) i(Sy — SKy) = 2ibxz — b(y + Kvy).

Thus, —b(y + Ky) = 0. Since b # 0, it follows that Ky = —y.
Now if y is K-skew-symmetric, then from (2.7), we get

(2.10) —SKz+1iSy = ibKx + by.

Now subtract Equation (2.10) from Equation (2.5), to get

(2.11) S(x + Kz) = —2by + ib(x — Kx).

Thus, b(x — Kx) = 0. Since b # 0, it follows that K2 = x. The rest of the proof is
similar. (]

In Section 6 of [2], we found useful and simple orthogonal transformations be-
tween centrosymmetric matrices and skew-centrosymmetric matrices of even or-
der. Using such transformations, we can transform every skew-centrosymmetric
singular value or determinant problem of even order to a centrosymmetric singu-
lar value or determinant problem of even order and vice versa. Moreover, we can
transform every linear system in which the matrix of coefficients is centrosymmet-
ric of even order to a linear system in which the matrix of coefficients is skew-
centrosymmetric of even order, and vice versa. We leave it as an open question to
find similar orthogonal transformations between K-centrosymmetric matrices and
K-skew-centrosymmetric matrices of even order. We also leave it for future work
to generalize the results in [4] about rank-one perturbations of centrosymmetric
matrices to K-centrosymmetric matrices.

3. K-CENTROSYMMETRIC AND K-SKEW-CENTROSYMMETRIC SUMMANDS

In this section we analyze the relationship between the eigenvalues and eigen-
vectors of K + S and the eigenvalues and eigenvectors of S, where S is either K-
centrosymmetric or K-skew-centrosymmetric. The proof of the following theorem
is straightforward, and hence omitted.

Theorem 3.1. Let S be an n X n nonzero K -centrosymmetric matriz, let v be the

number of linearly independent eigenvectors of S, and let A= K + S. Then

(a) A and S share v linearly independent eigenvectors that belong to £.

(b) If x is K-symmetric, then (X, x) is an eigenpair of S if and only if (1+ X, z) is
an eigenpair of A.
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(c) If x is K-skew-symmetric, then (\, x) is an eigenpair of S if and only if (—1+
A, x) is an eigenpair of A.

Observe that the +1’s in the preceding proposition are the eigenvalues of the
matrix K. Thus, if S has n linearly independent eigenvectors, then the eigenvalues
of K can be ordered as p1, 2, - - -, i, in such a way that the eigenvalues of K + .S
are exactly p; + Aj, 7 = 1,...,n, where the A;’s are the eigenvalues of S. This is
the best relationship between the eigenvalues of the summands and the eigenvalues
of the sum that we can hope for.

Now we handle a special case of K-centrosymmetric matrices.

Theorem 3.2. Let p be a nonzero real number, u an n x 1 K-symmetric real vector
such that ||ull2 = 1, K a nontrivial symmetric involution, and H, = K + puu”.
Then

(a) The eigenvectors of uu” are eigenvectors of H,?, and uu” and H, share n
linearly independent eigenvectors.

(b) If X is an eigenvalue of H,, then A = 1+ p or A = £1, where the +1 are the
eigenvalues of K.

(c) det(H,) = £(1+ p).

(d) If p # —1, then H, is nonsingular and Hp_1 = H,, where o = %.

Proof. First, note that the matrix puu” has two distinct eigenvalues 0 (of multiplic-
ity n — 1) and p. Now since the matrix puu” is K-centrosymmetric, then Theorem
3.1 applies. You may also depend on the fact that H2 = I + (2p + p*)uu”. For
more details, we refer the reader to the proof of Theorem 4.1 in [1].

U

The situation with a K-skew-centrosymmetric summand S is not so clear as in
the K-centrosymmetric case. Nonetheless, the eigensystem of K + .S can be largely
determined in terms of S.

Theorem 3.3. Let S be an n x n nonzero K -skew-centrosymmetric matriz and let
A=K+ S. Then

(a) Every eigenvector of S is an eigenvector of A?.

(b) w is an eigenvalue of S if and only if £+/p? + 1 is an eigenvalue of A.

(c) If, in addition, S is also skew-symmetric, then the eigenvalues of A are either
real or pure imaginary.

Proof.
A2 =(S+K)(S+K)=S*+SK+KS+K?*=85*+SK -SK+I=5%+1

from which (a) follows. Furthermore, if \ is an eigenvalue of A, then \? = p? + 1,
for some eigenvalue p of S. Thus, (b) is proved. Now if S is also skew-symmetric
and if )\ is an eigenvalue of A, then A\ = 1 + 2, for some eigenvalue y = bi of S,
where b € R. Thus, A> = 1 — b? and hence, A = £+/1 — b2. Therefore, \ is real if
and only if || <1 and pure imaginary if and only if |b] > 1. O

Now let S be a real skew-symmetric and K-skew-centrosymmetric and let A =
K + S. Since S is diagonalizable, then so is A2. It follows that A2 has no Jordan
blocks of order greater than 1, so the same is true for A. Therefore, A is diagonaliz-
able. Note also that the eigenvalues of A are real or pure imaginary, which enables
us to make an interesting homotopy construction.
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Example 3.4. We construct an analytic homotopy H(¢), 0 < ¢ < 1, in the (topo-
logical) space of diagonalizable matrices, between K = H(0) and any n x n real
skew-symmetric and K-skew-centrosymmetric S = H (1) such that H(t) has only
real or pure imaginary eigenvalues for 0 < ¢ < 1. Specifically, define

H(t) = (1 - t)K +15.

Clearly H(0) = K and H(1) = S and H(t) is analytic in ¢. Furthermore, for
0 <t<1, we have

H(t):(l—t)(K—i—(lit)S).

Now 11 H(t) is diagonalizable (which implies H (t) is diagonalizable) and by The-
orem 3.3 its eigenvalues are real or pure imaginary.

Homotopies have applications in both linear and nonlinear systems of equations.
The most significant application to linear systems goes back to the early 1990’s,
when Liu and others including Golub, worked on methods for finding eigenvalues
of matrices. The idea is that with a homotopy of the form M(\) = AA + (1 — \)B,
one can start with a simple matrix, e.g., diagonal B at A = 0 and use the fact
that the eigenvalues of M are continuous functions of A. Since those at A = 0 are
known, one attempts to compute the eigenvalues of M (\) by continuation methods
such as Ode Solvers as A goes from 0 to 1 and in the end find the eigenvalues of
the harder matrix A. (Moreover, these methods are important because they are
naturally implemented on parallel computers.)

The relationship between the eigenvalues of K + D and the eigenvalues of D,
where K = J and D is a matrix with zeros everywhere except possibly on the main
diagonal or the main counterdiagonal (the positions which proceed diagonally from
the last entry in the first row to the first entry in the last row) can be found in
Section 3 of [1]. For the case when K is not a multiple of I or .J, the relationship
between the eigen structure of K 4+ D and the eigen structure of D remains an open
question that we propose for our readers to investigate.
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