
CANADIAN APPLIED
MATHEMATICS QUARTERLY
Volume 12, Number 3, Fall 2004

A CLASSIC TRENCH-TYPE ALGORITHM FOR

SKEW-SYMMETRIC TOEPLITZ MATRICES

IYAD T. ABU-JEIB

ABSTRACT. We present an efficient classic Trench-type
algorithm for the inversion of real skew-symmetric Toeplitz ma-
trices of even order.

1 Introduction We extend Trench’s algorithm (see [11]) for sym-
metric Toeplitz matrices to skew-symmetric Toeplitz matrices. In our
algorithm, we present an O(n2) method to find the inverse of a finite
even-order real skew-symmetric Toeplitz matrix (with some restrictions).
Our algorithm is simple and it uses very similar techniques to those used
by Trench. It is easy to derive and easy to implement. In addition,
we do not require the matrix to be positive definite. We recall here
that well-known researchers thought that the classic Durbin’s, Levin-
son’s (see [3, 6, 7]), and Trench’s algorithms can not be generalized
to skew-symmetric Toeplitz matrices. But, we managed to generalize
them. Our algorithm was tested on skew-symmetric Toeplitz matrices

that appear in Sinc methods. It was tested on matrix Sn of I
(−1)
n , where

I(−1)
n = [ηij]

n

i,j=1

where ηij = ei−j , ek = 1/2 + sk, and sk =
∫ k

0
sinc(x) dx, where

sinc(x) =







sin(πx)

πx
for x 6= 0

1 for x = 0.

Thus, I
(−1)
n can be expressed in the form

I(−1)
n =

[

1

2

]

+ Sn,

AMS subject classification: 65F05, 15A57.
Keywords: skew-symmetric Toeplitz matrix, Trench algorithm, inverse, skew-

centrosymmetric.
Copyright c©Applied Mathematics Institute, University of Alberta.

259

260 IYAD T. ABU-JEIB

where [1/2] is the n×n matrix whose elements are all equal to 1/2. We

tested the algorithm also on matrix I
(1)
n of Sinc methods. I

(1)
n is an n×n

skew-symmetric Toeplitz matrix defined as follows

I(1)
n =



























0 −1 1
2 . . . (−1)n−1

n−1

1 0 −1 . . . (−1)n−2

n−2

− 1
2 1 0 . . . (−1)n−3

n−3

...
...

... . . .
...

(−1)n

n−1
(−1)n−1

n−2
(−1)n−2

n−3 . . . 0



























.

For more about the matrices of Sinc methods and about Sinc methods,
see [2, 4, 5, 8, 9, 10].

2 Preliminaries We employ the following notation. We denote
the transpose of a matrix A by AT . As usual, Ik denotes the k × k
identity matrix. When counting flops, we treat addition/subtraction
the same as multiplication/division. By the main counterdiagonal (or
simply counterdiagonal) of a square matrix we mean the positions which
proceed diagonally from the last entry in the first row to the first entry
in the last row.

Definition 2.1. The counteridentity matrix, denoted J , is the square
matrix whose elements are all equal to zero except those on the coun-
terdiagonal, which are all equal to 1.

We note that multiplying a matrix A by J from the left results in
reversing the rows of A and multiplying A by J from the right results in
reversing the columns of A. Throughout this paper, we will denote the
k × k counteridentity matrix by Jk. Note that multiplying a matrix or
a vector by J does not contribute to the running time.

Definition 2.2. A matrix A is skew-centrosymmetric if JAJ = −A,
persymmetric if JAJ = AT , and Toeplitz if the elements along each
diagonal are equal.

Note that skew-symmetric Toeplitz matrices are skew-symmetric skew-
centrosymmetric and if an n×n matrix A is persymmetric, then A(i, j) =

A CLASSIC TRENCH-TYPE ALGORITHM 261

A(n− j + 1, n− i + 1). Note also that if Tn is an n× n skew-symmetric
Toeplitz matrix, then Tn has the following form

Tn =















0 σ1 σ2 . . . σn−1

−σ1 0 σ1 . . . σn−2

−σ2 −σ1 0 . . . σn−3

...
...

... . . .
...

−σn−1 −σn−2 −σn−3 . . . 0















.

The above form is the form we will refer to in the next section. Note
that the first row (excluding the first element) generates (determines)
Tn, i.e., the vector hn = [σ1, σ2, · · · , σn−1]

T is a generator of Tn. For

example, in matrix Sn of I
(−1)
n described in the introduction, σk =

∫

−k

0 sinc(x)dx, and in matrix I
(1)
n , σk = (−1)k/k.

Definition 2.3. Let A be an n×n matrix. The leading principal matrix

of A of order k is the matrix formed from A by deleting the last n − k
columns and the last n − k rows of A.

3 The algorithm Throughout the rest of the paper, let k be even,
and let Tk be a k × k real skew-symmetric Toeplitz matrix and assume
Ti, ∀i ∈ {2, 3, · · · , k} ∩ 2Z, is nonsingular (i.e., all leading principal
matrices of Tk of even order are nonsingular). We recall that Trench
has similar restrictions in his algorithm. We note also that it happens
sometimes that all even-order matrices of a family of skew-symmetric
Toeplitz matrices are non-singular as it is the case with matrix Sn of

I
(−1)
n and matrix I

(1)
n . For the proofs, see [2, 4]. Note that odd-order

skew-symmetric (and odd-order skew-centrosymmetric matrices) are sin-
gular, and hence, it is essential to have a two-step algorithm that skips
the odd-order matrices. Thus, our Durbin-type algorithm is a two-step
algorithm because it moves from order k to order k+2 instead of moving
from order k to order k +1. Now we repeat some of the steps mentioned
in our paper [1] that presents Durbin-type and Levinson-type algorithms
for skew-symmetric Toeplitz matrices. First, note that Tk+2 can be writ-
ten as

Tk+2 =

[

Tk JkRk

−RT
k Jk T2

]

,

262 IYAD T. ABU-JEIB

where

Rk =











σ1 σ2

σ2 σ3

...
...

σk σk+1











.

Once again, in each step we will move from Tk to Tk+2 instead of Tk+1.
We start with T2. Now, we extend Durbin’s algorithm. If we know the
solution of TkY = Rk, where Y is k × 2, then we can know the solution
of

[

Tk JkRk

−RT
k Jk T2

] [

Z
W

]

=

[

Rk

Sk

]

,

where Z is k × 2, W is 2 × 2, and Sk =
[σk+1 σk+2

σk+2 σk+3

]

. Note that Tk and
Jk are k × k, Rk and Z are k × 2, and T2 and Sk are 2 × 2. Now note
that

TkZ + JkRkW = Rk and − RT
k JkZ + T2W = Sk.

Thus, Z = Y + JkY W and W = (T2 − Rk
T Y)−1(Sk + Rk

T JkY). Note
that T2 − Rk

T Y is nonsingular since

HT
k Tk+2Hk =

[

Tk 0

Y T JkTk − RT
k Jk T2 − RT

k Y

]

,

where

Hk =

[

Ik JkY
0 I2

]

.

(Note that TkJkY + JkRk = 0 and Y T JkTkJkY + Y T Rk = 0 also.)
Hence, det(Tk+2) = det(Tk) ·det(T2−RT

k Y). Now since we are assuming
Tk+2 is nonsingular, T2 − RT

k Y is nonsingular.
Now we reduce the cost of computing RT

k Yk. Here we will use the
same notation as before (but we will replace Y by Yk, Z by Zk and W
by Wk). Now consider

RT
k Yk =

[

RT
k−2 ST

k−2

]

[

Zk−2

Wk−2

]

.

But, Zk−2 = Yk−2 + Jk−2Yk−2Wk−2. Thus,

RT
k Yk = RT

k−2Yk−2 + (T2 − RT
k−2Yk−2)W

2
k−2.

A CLASSIC TRENCH-TYPE ALGORITHM 263

Therefore, we can use the previously computed values of W and RT Y
to compute the new value of RT Y which we will call E.

Classic Durbin-type algorithm for skew-symmetric Toeplitz

matrices.

Input: m (an even positive integer), σ = [σ1 σ2 · · · σm+1]
T (a

generator of a real skew-symmetric Toeplitz matrix Tm+2).

Y2 =

[

−σ2/σ1 −σ3/σ1

1 σ2/σ1

]

T2 =

[

0 σ1

−σ1 0

]

R2 =

[

σ1 σ2

σ2 σ3

]

E = RT
2 Y2

W =

[

0 0
0 0

]

for k = 2, · · · , m − 2, step 2

Let Jk be the counteridentity matrix of order k.

Rk =











σ1 σ2

σ2 σ3

...
...

σk σk+1











Sk =

[

σk+1 σk+2

σk+2 σk+3

]

E = E + (T2 − E)W 2

Pk = (T2 − E)−1

W = Pk(Sk + RT
k JkYk)

Zk = Yk + JkYkW

Yk+2 =

[

Zk

W

]

end for

264 IYAD T. ABU-JEIB

Output: Ym (the solution of TmYm = Rm, where Tm is the skew-
symmetric Toeplitz matrix whose generator is [σ1 σ2 · · · σm−1]

T , and
Rm is as defined above).

It is clear that the number of flops of the previous algorithm is 4m2 +
O(m). We remind the reader that we define a flop to be one addition
or one multiplication, while some people define it to be one addition
and one multiplication. If we define the flop to be one addition and one
multiplication, then the running time of the previous algorithm will be
almost half of the running time we have above.

Now we derive a classic Trench-type algorithm. Assume we have the
solution (from the previous algorithm) of Tn−2Y = Rn−2, where Y is
(n− 2)× 2. Now, we want to find the inverse of Tn. Recall that Tn can
be written as

Tn =

[

Tn−2 Jn−2Rn−2

−RT
n−2Jn−2 T2

]

,

where

Rn−2 =











σ1 σ2

σ2 σ3

...
...

σn−2 σn−1











.

Now we can write

T−1
n =

[

A B
−BT C

]

,

where A is (n− 2)× (n− 2), B is (n− 2)× 2, and C is 2× 2. Thus, we
have to find A, B and C. But,

Tn

[

B
C

]

=

[

0
I2

]

.

Hence, B = Jn−2Y C and C = (T2 − RT
n−2Y)−1. Note that C is 2 × 2

and note also that we proved earlier that T2−RT
n−2Y is invertible. Also,

we have Tn−2A − Jn−2Rn−2B
T = In−2. Thus, A = T−1

n−2 − Jn−2Y BT .
Let M = Jn−2Y BT . Then,

A(i, j) = T−1
n−2(i, j) − M(i, j).

Now since A and T−1
n−2 are persymmetric,

A(i, j) = T−1
n−2(n − j − 1, n− i − 1) − M(i, j),

A CLASSIC TRENCH-TYPE ALGORITHM 265

and

A(i, j) = A(n − j − 1, n − i − 1) + M(n − j − 1, n − i − 1) − M(i, j).

But, T−1
n is also persymmetric. Hence, A(i, j) = A(n− j + 1, n− i + 1),

which implies A(i + 2, j + 2) = A(n − j − 1, n − i − 1). Therefore,

A(i + 2, j + 2) = A(i, j) − M(n − j − 1, n− i − 1) + M(i, j),

or equivalently,

A(i, j) = A(i − 2, j − 2) − M(n − j + 1, n− i + 1) + M(i − 2, j − 2).

Now note that B and C determine the last two columns of T−1
n and also

note that the first row of T−1
n is the transpose of the reverse of the last

column of T−1
n and the second row of T−1

n is the transpose of the reverse
of the column of T−1

n that proceeds the last column. Thus, the first two
rows of A can be determined as follows:

A(1, 1) = A(2, 2) = 0
A(1, 2) = C(1, 2)
A(2, 1) = C(2, 1)
for j = 3, · · · , n − 2

A(1, j) = B(n − j + 1, 2)
A(2, j) = B(n − j + 1, 1)

end for

Now, we can determine the remaining elements of A, and hence, of
T−1

n from the first two rows. Note that it suffices to determine the
quarter of T−1

n that is above the main diagonal and which lies between
the main diagonal and the main counterdiagonal. The remaining part
of T−1

n that lies above the main diagonal can be determined from the
persymmetry property of T−1

n and the half of T−1
n that lies below the

main diagonal can be determined from the skew-symmetry property of
T−1

n . Finally, note that the main diagonal of T−1
n consists only of zeros.

Thus, after assigning the elements of the first two rows of A, it suffices
to execute the following:

for i = 3, · · · , bn−1
2 c + 1

for j = i + 1, · · · , n − i + 1
A(i, j) = A(i − 2, j − 2) − M(n − j + 1, n − i + 1)

+M(i− 2, j − 2).
end for

266 IYAD T. ABU-JEIB

end for

Thus, our O(n2) Trench-type algorithm is the following:

Classic Trench-type algorithm for skew-symmetric Toeplitz

matrices.

Input: n (an even positive integer), σ = [σ1 σ2 · · · σn−1]
T (a gener-

ator of a real skew-symmetric Toeplitz matrix Tn).

T2 =

[

0 σ1

−σ1 0

]

m = n − 2

R =











σ1 σ2

σ2 σ3

...
...

σn−2 σn−1











Y = Durbin(m, σ)

Let J be the counteridentity matrix of order m

C = (T2 − RT Y)−1

B = J Y C

M = J Y BT

Now declare A to be an m × m two-dimensional array

A(1, 1) = A(2, 2) = 0

A(1, 2) = C(1, 2)

A(2, 1) = C(2, 1)

v = n + 1

for j = 3, · · · , m

k = v − j

A(1, j) = B(k, 2)

A(2, j) = B(k, 1)

end for

γ = bn−1
2 c + 1

for i = 3, · · · , γ
k = v − i

A CLASSIC TRENCH-TYPE ALGORITHM 267

p = i − 2

w = i + 1

for j = w, · · · , k

q = j − 2

A(i, j) = A(p, q) − M(v − j, k) + M(p, q)

end for

end for

It is easy to see that the running time of the previous algorithm is
about 5n2 +O(n). Note that the remaining elements of T−1

n are known.
If the reader is interested in determining them, here is how:

(1) Let M be the matrix whose first n − 2 rows are the rows of B and
whose last two rows are the rows of C. Then, the last two columns
of T−1

n are the rows of M (in order).
(2) Let T−1

n (i, j) = A(i, j) for every element of A we determined above.
(3) The first n− 2 elements of each of the last two rows of T−1

n are the
rows (in order) of −BT .

(4) The remaining elements of the main diagonal are zeros.
(5) Execute the code:

for i = 3, · · · , m
k = n − i + 1
for j = k, · · · , m

T−1
n (i, j) = T−1

n (n − j + 1, k)
end for

end for

(6) Execute the code:

for i = 2, · · · , m
k = i − 1
for j = 1, · · · , k

T−1
n (i, j) = −T−1

n (j, i)
end for

end for

4 An example and an Octave program

4.1 Example In the following example we find (calculations are done
by Octave which is a math-oriented programming language similar to

MATLAB) the inverse of I
(1)
8 (see the introduction) whose generator σ

268 IYAD T. ABU-JEIB

is

σ =





















− 1
1/2

−1/3
1/4

−1/5
1/6

−1/7





















.

Note that the inputs to the algorithm are 8 and σ.

Y =

















0.55361 −0.39618
0.92117 −0.47462
0.57966 −0.34580
0.92117 −0.50067
0.55361 −0.31735
1.00000 −0.55361

















T2 =

[

0 −1
1 0

]

R =

















−1.00000 0.50000
0.50000 −0.33333

−0.33333 0.25000
0.25000 −0.20000

−0.20000 0.16667
0.16667 −0.14286

















C =

[

6.8672e− 17 8.9273e− 01
−8.9273e− 01 8.8480e− 17

]

B =

















0.49422 0.89273
0.28331 0.49422
0.44697 0.82235
0.30870 0.51747
0.42371 0.82235
0.35368 0.49422

















M =
[

M1 M2

]

A CLASSIC TRENCH-TYPE ALGORITHM 269

where

M1 =

















−1.6507e− 17 9.7034e− 03 −8.2948e− 03
−9.7034e− 03 −7.4945e− 18 −1.3531e− 02

8.2948e− 03 1.3531e− 02 3.3041e− 17
−2.2227e− 02 −6.6803e− 03 −2.5283e− 02

3.1551e− 02 2.6405e− 02 2.1423e− 02
−8.0075e− 02 −3.8958e− 02 −7.8355e− 02

















,

M2 =

















2.2227e− 02 −3.1551e− 02 8.0075e− 02
6.6803e− 03 −2.6405e− 02 3.8958e− 02
2.5283e− 02 −2.1423e− 02 7.8355e− 02
7.3726e− 18 −3.8764e− 02 3.4111e− 02
3.8764e− 02 4.9060e− 17 9.1230e− 02

−3.4111e− 02 −9.1230e− 02 7.9147e− 18

















.

The inverse before using persymmetry and skew-symmetry (note that
the default elements are zeros) is:

[

N1 N2

]

where

N1 =

























0.00000 0.89273 0.49422 0.82235
−0.89273 0.00000 0.35368 0.42371

0.00000 0.00000 0.00000 0.81120
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000

−0.49422 −0.28331 −0.44697 −0.30870
−0.89273 −0.49422 −0.82235 −0.51747

























,

N2 =

























0.51747 0.82235 0.49422 0.89273
0.30870 0.44697 0.28331 0.49422
0.45181 0.76623 0.44697 0.82235
0.37891 0.00000 0.30870 0.51747
0.00000 0.00000 0.42371 0.82235
0.00000 0.00000 0.35368 0.49422

−0.42371 −0.35368 0.00000 0.89273
−0.82235 −0.49422 −0.89273 0.00000

























.

The inverse after using persymmetry and before using skew-symmetry
is

[

Q1 Q2

]

270 IYAD T. ABU-JEIB

where

Q1 =

























0.00000 0.89273 0.49422 0.82235
−0.89273 0.00000 0.35368 0.42371

0.00000 0.00000 0.00000 0.81120
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000

−0.49422 −0.28331 −0.44697 −0.30870
−0.89273 −0.49422 −0.82235 −0.51747

























,

Q2 =

























0.51747 0.82235 0.49422 0.89273
0.30870 0.44697 0.28331 0.49422
0.45181 0.76623 0.44697 0.82235
0.37891 0.45181 0.30870 0.51747
0.00000 0.81120 0.42371 0.82235
0.00000 0.00000 0.35368 0.49422

−0.42371 −0.35368 0.00000 0.89273
−0.82235 −0.49422 −0.89273 0.00000

























.

The inverse after using skew-symmetry is

[

G1 G2

]

where

G1 =

























0.00000 0.89273 0.49422 0.82235
−0.89273 0.00000 0.35368 0.42371
−0.49422 −0.35368 0.00000 0.81120
−0.82235 −0.42371 −0.81120 0.00000
−0.51747 −0.30870 −0.45181 −0.37891
−0.82235 −0.44697 −0.76623 −0.45181
−0.49422 −0.28331 −0.44697 −0.30870
−0.89273 −0.49422 −0.82235 −0.51747

























,

G2 =

























0.51747 0.82235 0.49422 0.89273
0.30870 0.44697 0.28331 0.49422
0.45181 0.76623 0.44697 0.82235
0.37891 0.45181 0.30870 0.51747
0.00000 0.81120 0.42371 0.82235

−0.81120 0.00000 0.35368 0.49422
−0.42371 −0.35368 0.00000 0.89273
−0.82235 −0.49422 −0.89273 0.00000

























.

A CLASSIC TRENCH-TYPE ALGORITHM 271

We note that the solution above is exactly the same as the solution
obtained by using Maple. The two solutions even match for a much
higher number of decimal places.

The one-norm of the difference between the inverse obtained above
and the inverse obtained using Octave’s inverse function is 1.8928e− 15
(note that e − 15 in Octave means 10−15).

4.2 An Octave program We note that we do not have to compute
the counteridentity matrix, J , in the program below. We can write the
program without it. We included it in the program for the sake of clarity.
We note also that the program can be shortened if we use Octave’s built-
in functions and operators. But, we decided to write it as above to make
it easy to understand for readers who do not know Octave.

#
1;
function J = Counter(n)
usage: J = Counter(n)
description: Creates the counteridentity matrix of order n.
J=zeros(n);
for i=1:n

J(i,n-i+1)=1;
endfor;
endfunction
=================
function Z = Durbin(sigma)
description : Solves the system TnY = Rn, where n is even and
Tn is a real skew-symmetric Toeplitz matrix generated by
[sigma(1) sigma(2) ... sigma(n-1)]T .
The input sigma=[sigma(1) sigma(2) ... sigma(n+1)]T

is the generator of Tn+2. It is an (n+1) by 1 column vector.
Rn is the n by 2 matrix described in the paper.
usage: Z = solve(sigma,D)
n = rows(sigma) - 1;
Y = [-sigma(2)/sigma(1),-sigma(3)/sigma(1);1,sigma(2)/sigma(1)];
T2 = [0,sigma(1);-sigma(1),0];
R = [sigma(1),sigma(2);sigma(2),sigma(3)];
E = R′ * Y; # Note that the prime is used for transpose in Octave.
W = zeros(2,2);
for k=2:n-2

if (rem (k, 2) != 0)
continue;

272 IYAD T. ABU-JEIB

endif;
R = zeros(k,2);
for i=1:k

R(i,1)=sigma(i);
R(i,2) = sigma(i+1);

endfor;
S = zeros(2,2);
S(1,1) = sigma(k+1);
S(1,2) = sigma(k+2);
S(2,1) = sigma(k+2);
S(2,2) = sigma(k+3);
J = Counter(k);
E = E + (T2 - E) * W * W;
P = inv(T2 - E);
W = P * (S + R′ * J * Y);
Z = Y + J * Y * W;
Y = [Z;W];

endfor;
Z = Y;
endfunction;
=================
function Z = inverse(sigma)
description : Finds the inverse of Tn where n is even, and
Tn is a real skew-symmetric Toeplitz matrix generated by
[sigma(1) sigma(2) ... sigma(n-1)]T .
The input sigma = [sigma(1) sigma(2) ... sigma(n-1)]T

is the generator of Tn. It is an (n-1) by 1 column vector.
usage: Z = inverse(sigma)
Y = Durbin(sigma);
n = rows(sigma) + 1;
m = n - 2;
T2 = [0,sigma(1);-sigma(1),0];
R = zeros(m,2);
for i=1:m

R(i,1)=sigma(i);
R(i,2) = sigma(i+1);

endfor;
J = Counter(m);
C = inv(T2 - R′ * Y); # Note that C is 2 × 2.
B = J * Y * C;
A = zeros(m,m);

A CLASSIC TRENCH-TYPE ALGORITHM 273

M = J * Y * B′;
A(1,1) = 0;
A(2,2) = 0;
A(1,2) = C(1,2);
A(2,1) = C(2,1);
v = n + 1;
for j=3:m

k = v - j;
A(1,j) = B(k,2);
A(2,j) = B(k,1);

endfor;
gamma = floor((n-1)/2) + 1;
for i=3:gamma

k = v - i;
p = i - 2;
w = i + 1;
for j=w:k

q = j - 2;
A(i,j) = A(p,q) - M(v-j,k) + M(p,q);

endfor;
endfor;
invT = [A,B;−B′,C];
Now determine the remaining elements of the half above
the main diagonal by using the persymmetry property.
for i=3:m

k = v - i;
for j=k:m

invT(i,j) = invT(v-j,k);
endfor;

endfor;
Now determine the half below the main diagonal by using the
skew-symmetry property.
for i=2:m

k = i - 1;
for j=1:k

invT(i,j) = -invT(j,i);
endfor;

endfor;
Z = invT;
endfunction;

274 IYAD T. ABU-JEIB

REFERENCES

1. I. T. Abu-Jeib, Classic Two-step Durbin-type and Levinson-type algorithms for
skew-symmetric Toeplitz matrices, Can. Appl. Math. Q. 12(3) (2004), 241–258.

2. I. T. Abu-Jeib and T. S. Shores, On properties of matrix I
(−1) of Sinc methods,

New Zealand J. Math. 32 (2003), 1–10.
3. D. Delsarte and Y. Genin, The split Levinson algorithm, IEEE Transactions

on Acoustics Speech and Signal Processing ASSP 34 (1986), 470–477.
4. P. Gierke, Ph.D. thesis, University of Nebraska-Lincoln, 1999.
5. J. Lund and K. Bowers, Sinc Methods for Quadrature and Differential Equa-

tions, SIAM, Philadelphia, 1992.
6. A. Melman, The even-odd split Levinson algorithm for Toeplitz systems, SIAM

J. Matrix Anal. Appl. 23 (2001), 256–270.
7. A. Melman, A two step even-odd split Levinson algorithm for Toeplitz systems,

Linear Algebra Appl. 338 (2001), 219–237.
8. F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer-

Verlag, New York, 1993.
9. F. Stenger, Collocating convolutions, Math. Comp. 64 (1995), 211–235.

10. F. Stenger, Matrices of sinc methods, J. Comput. Appl. Math. 86 (1997),
297–310.

11. W. F. Trench, An algorithm for the inversion of finite Toeplitz matrices, J.
Soc. Indust. Appl. Math. 12 (1964), 515–522.

Department of Computer Science and Information Systems, Fenton Hall,

SUNY Fredonia, Fredonia, New York 14063, USA

E-mail address: abu-jeib@cs.fredonia.edu

