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Abstract. We study the eigen structure of rank-one perturbations of cen-
trosymmetric matrices and reduce the eigen/inverse/determinant problem of
rank—one perturbations of centrosymmetric matrices to corresponding prob-
lems half the size of the original ones. We also study transformations of cen-
trosymmetric matrices.

1. Introduction

Centrosymmetric matrices have a rich eigenstructure that has been studied ex-
tensively in the literature (see [17, 14, 1, 11, 2, 5, 3]). Many results for cen-
trosymmetric matrices have been generalized to wider classes of matrices that arise
in a number of applications (see [7, 8, 13]). Perturbations of matrices, especially
rank—one perturbations, were studied by many (see [16, 10, 15, 4]). In particular,
many people studied rank-one perturbations of real symmetric matrices (by study-
ing rank—one perturbations of diagonal matrices). A clear relationship between
the eigenvalues and the eigenvectors of the perturbated matrix and the eigenvalues
and the eigenvectors of the original matrix has not been found yet. We will prove
that if H is an n X n centrosymmetric matrix, w is an n X 1 vector, and v is an
n x 1 symmetric or skew—symmetric vector, then H and H +wu” share some eigen-
values and some eigenvectors. If H is nondefective, then H and H + wu” share
|n/2| eigenvalues and |n/2] linearly independent eigenvectors when u is symmet-
ric, and [n/2] eigenvalues and [n/2] linearly independent eigenvectors when v is
skew—symmetric. When w = u, we will reduce the computation of the remaining
eigenvalues and the remaining eigenvectors of H + uu” significantly. In addition,
we will reduce the determinant/inverse problem of H + uu” to two smaller deter-
minant /inverse problems. We will prove that if H is a centrosymmetric matrix and
if the number of linearly independent eigenvectors of H is 7, then H and JH share
v linearly independent eigenvectors. We will also mention the relationship between
the eigenvalues of H and the eigenvalues of JH.

2. Preliminaries

We employ the following notation. We denote the transpose of a matrix A by
AT and the determinant of A by det(A). We use the notation [z] for the smallest
integer greater than or equal to z and |z] for the largest integer less than or equal
to z. As usual, I denotes the identity matrix.
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By the main counterdiagonal (or simply counterdiagonal) of a square matrix we
mean the positions which proceed diagonally from the last entry in the first row to
the first entry in the last row.

Definition 2.1. The counteridentity matrix, denoted J, is the square matrix whose
elements are all equal to zero except those on the counterdiagonal, which are all
equal to 1.

We note that multiplying a matrix A by J from the left results in reversing the
rows of A and multiplying A by J from the right results in reversing the columns
of A.

A vector z is called symmetric if Jr = = and skew—symmetric if Jxr = —=x.
Throughout this paper let £ be the set of all n x 1 vectors that are either symmetric
or skew—symmetric.

Definition 2.2. A matrix A is centrosymmetric if JAJ = A.

Centrosymmetric matrices have applications in many fields like communication
theory, harmonic differential quadrature, statistics, differential equations, numerical
analysis, engineering, physics, and pattern recognition. Rank—one perturbations
of centrosymmetric matrices have applications in several fields. For applications
of centrosymmetric matrices, see [12, 11, 9, 6]. Note that symmetric Toeplitz
matrices are symmetric centrosymmetric.

We use the following known result (see [2, 5], for example).

Theorem 2.3. Let H be an n X n centrosymmetric matriz, let § = 5, and let

£ =251, Then

(i) If n is even, then H can be written as

A JCJ ]

B=1c¢ jar]

where A, J and C are § X § matrices. If n is odd, then H can be written as

Az JCJT T
yT g y'J |,
C Jx JAJ |

where A, J and C are £ X & matrices, © and y are & X 1 vectors, and q is a
scalar.

(il) If n is even, then H is similar to

A-JC 0
0 A+JC |-
If n is odd, then H is similar to
A-JC 0 0
0 q V2y"

0 V2z A+ JC
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(iii) If m is even, then the eigenvalues of H are the eigenvalues of Fy := A — JC
and the eigenvalues of G; := A+ JC. Then the eigenvectors correspond-
ing to the eigenvalues of Fy can be chosen to be skew-symmetric of the form
(T, —uT )T, where u is an eigenvector of Fi, while the eigenvectors corre-
sponding to the eigenvalues of G1 can be chosen to be symmetric of the form
(W, uT )T, where u is an eigenvector of G1. If n is odd, then the eigenvalues
of H are the eigenvalues of Fy and the eigenvalues of

q Vv2yT

Gy =
> V2  A+JC

Then the eigenvectors corresponding to the eigenvalues of Fy can be chosen
to be skew—symmetric of the form (u”,0,—uTJ)T, where u is an eigenvector
of Fi, while the eigenvectors corresponding to the eigenvalues of G2 can be
chosen to be symmetric of the form (u”,v2a,uTJ)T, where (a,u™)T is an
eigenvector of Ga.

3. Our Results

In this section, we prove several properties of rank—one perturbations of cen-
trosymmetric matrices. We also study the effect of reversing the rows/columns of
a centrosymmetric matrix on its eigenvalues and eigenvectors.

Proposition 3.1. Let u be an n x 1 symmetric vector, let w be an n x 1 vector,
let H be an n x n nondefective centrosymmetric matriz, and let M = H + wu”.
Then, H and M share at least |n/2]| eigenvalues and |n/2| linearly independent
eigenvectors.

Proof. By Theorem 2.3, |n/2] linearly independent eigenvectors of a nondefective
centrosymmetric matrix can be chosen to be skew—symmetric. Now if z isann x 1
skew-symmetric vector, then u?z = 0. Hence, if z is skew-symmetric, then (), z)
is an eigenpair of H if and only if (A, z) is an eigenpair of M. O
Lemma 3.2. Let § = 2 and let £ = 251,

(i) Let n be even, let u be an n x 1 symmetric/skew—symmetric vector, and let

S =wuT. Then u and S can be written as
H
u =
p

and

g— R LJ

| JL JRJ |’

where v is  x 1, J is 0 x 6, R = vv™, p = Ju if u is symmetric and p = —Jv
if u is skew—symmetric, and L = R if u is symmetric and L = —R if u is

skew—symmetric.
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(ii) Let n be odd, let u be an n x 1 symmetric/skew—symmetric vector and let
S =uuT. Then u and S can be written as

v
u= | ¢ |,
L P
and
" R (v LJ
S = C’UT C2 CUTJ 5
| JL (Jv JRJ

where v is Ex 1, Jis Ex & R=wvwT, ( =k (some scalar k) if u is symmetric
and ¢ = 0 if u is skew—symmetric, p = Jv if u is symmetric and p = —Jv
if u is skew—symmetric, and L = R if u is symmetric and L = —R if u is
skew—symmetric.

Proof. It suffices to prove the case when w is symmetric and n is even. The rest of
the proof is similar. The form of u follows from the definition of symmetric vectors,
and the remaining results follow immediately from the fact that, since (Jv)T = vT.J,

o] or ) - [ v ]

JouT  JuuTJ
O

Now we use Theorem 2.3 to reduce the eigen problem of M (when w = u) to two
smaller eigen problems. One of these reduced eigen problems will be the same as
one of the reduced eigen problems of H. In other words, one of the reduced eigen
problems of M will be free of w.

Theorem 3.3. Let u be an n x 1 symmetric vector, let H be an n X n centrosym-
metric matriz, let M = wu” + H, let H be decomposed as in Theorem 2.3, let R

be as in the previous lemma, and let 6 = 3.

(i) If n is even, then the eigenvalues of M are the eigenvalues of F, == A —
JC and the eigenvalues of Gs := A+ JC + 2R, and the eigenvectors of
M can be determined from the eigenvectors of Fy and the eigenvectors of
Gs. Moreover, the shared eigenvalues between H and M are the eigenvalues
of F1 and the shared eigenvectors are the eigenvectors determined from the
eigenvectors of Fy. If, in addition, M is nondefective, then § eigenvalues and
6 skew—symmetric linearly independent eigenvectors of M can be determined
from solving the equation

Fifi = Aifs,

and § eigenvalues and & symmetric linearly independent eigenvectors of M
can be determined from solving the equation

G3g;i = Migs-
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(ii) If n is odd, then the eigenvalues of M are the eigenvalues of Fy and the
eigenvalues of G4, and the eigenvectors of M can be determined from the
eigenvectors of Fi and the eigenvectors of G4, where

q+k? V2(y + kv)T
V2(z +kv) A+JC+2R

Moreover, the shared eigenvalues between H and M are the eigenvalues of Fy
and the shared eigenvectors are the eigenvectors determined from the eigen-
vectors of Fy. If, in addition, M is nondefective, then |n/2| eigenvalues and
n/2| skew-symmetric linearly independent eigenvectors of M can be deter-
mined from solving the equation

Eifi = Aifi,

and [n/2] eigenvalues and [n/2] symmetric linearly independent eigenvectors
of M can be determined from solving the equation

Gy =

G19i = Migs.

Proof. We will prove only Part (i). The proof of Part (ii) is similar. From Theo-
rem 2.3, H can be written as

H:[A JCJ])

C JAJ

T

where A, J and C are § X §. From the previous lemma, uu” can be written as

r | R RJ
v =1JrR JRJ |’

where J and R are § X §. Thus, M can be written as

A+R  J(C+JR)J
C+JR JA+RJ |

Now apply Theorem 2.3 to M. O

v

Note that the previous theorem provides another proof for Proposition 3.1. Note
also that every eigenspace of M has a basis consisting of vectors from &.

In the following corollary, we reduce the inverse/determinant problem of nonsin-
gular rank—one perturbations of centrosymmetric matrices to a smaller inverse/determinant
problem. Both I and J in the corollary are n/2 x n/2.

Corollary 3.4. With the same notation as the previous theorem

(i) If n is even and M is nonsingular, then
det(M) = det(A — JC) -det(A + JC + 2R),
and
1| a7t +p7! (B~ —a™h)J
2| JBpt-al) Jal+pgHT |’
where o« = A—JC and = A+ JC + 2R.

71:
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(ii) If n is odd and M is nonsingular, then
det(M) = det(4 — JC)-det ((g+k*)(A + JC + 2R) — 2(z + kv)(y + kv)T),
and if ¢+ k% =1, then

LN +ah) —N~Yz + kv) LNt —ah)J
M7 = | —(y+k)TN"Y 1420+ k)TN~ Yoz +kv) —(y+kv)TN"LT |,
TJ(NTt—a™h) —JN=L(z + kv) TJ(N"t+a™h)T

where o = A— JC and N = A+ JC + 2R — 2(z + kv)(y + kv)T.

Proof. It suffices to prove Part (i).

r_ | A-JC 0
M@ _[ 0 A+ JC+2R
where
1 I —-J
o=zl 7]
Thus,
_ (A—JC’)_1 0
M 1 — QT . Q
0 (A+ JC +2R)

O

Note that if n is odd, M is nonsingular, and g+k? # 1, then M ~! can be obtained
using the formula for the case when ¢+ k% = 1, and it can also be obtained directly
using a proof similar to the proof of Part (i) of the previous corollary. Note also
that if H is nonsingular and n is even, then

det(M)  det(A+JC +2R)
det(H) det(4 + JC)

det(A + JC) - det (I + (A + JC) 1(2R))
det(A + JC)

= 1+207(A+JC) .

If n is odd, then det(M) = det(H) - %, where

Ny = det ((g + k*)(A + JC +2R) — 2(z + kv) (y + kv)T)
and
Ny = det (q(A+ JOC) —2zy™) .

Now we derive similar results to those in the previous proposition, theorem, and
corollary, for the case when u is skew—symmetric instead of symmetric. The proofs
are similar to the previous ones.
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Proposition 3.5. Let u be an nx1 skew—symmetric vector, let w be an nx1 vector,
let H be an n x n nondefective centrosymmetric matriz, and let
M = H +wu®. Then, H and M share at least [n/2] eigenvalues and [n/2]
linearly independent eigenvectors.

Theorem 3.6. Let u be an n x 1 skew-symmetric vector, let H be an n X n
centrosymmetric matriz, let M = uu” +H, let H be decomposed as in Theorem 2.3,
let R be as in Lemma 3.2, and let § = §.

(i) If n is even, then the eigenvalues of M are the eigenvalues of Fy = A —
JC + 2R and the eigenvalues of Gy := A+ JC, and the eigenvectors of
M can be determined from the eigenvectors of F» and the eigenvectors of
G1. Moreover, the shared eigenvalues between H and M are the eigenvalues
of G1 and the shared eigenvectors are the eigenvectors determined from the
eigenvectors of G1. If, in addition, M is nondefective, then & eigenvalues and
6 skew—symmetric linearly independent eigenvectors of M can be determined
from solving the equation

Efi = Aifi,

and & eigenvalues and & symmetric orthonormal eigenvectors of M can be
determined from solving the equation

G19;i = Migi-

(ii)) If n is odd, then the eigenvalues of M are the eigenvalues of F> and the
eigenvalues of G, and the eigenvectors of M can be determined from the
eigenvectors of Fy and the eigenvectors of G, where

o q V2yT
2 =
V2z A+ JC

Moreover, the shared eigenvalues between H and M are the eigenvalues of G4
and the shared eigenvectors are the eigenvectors determined from the eigen-
vectors of Ga. If, in addition, M is nondefective, then |n/2| eigenvalues and
|n/2| skew-symmetric linearly independent eigenvectors of M can be deter-
mined from solving the equation

Bfi = \ifi,
and [n/2] eigenvalues and [n/2] symmetric linearly independent eigenvectors
of M can be determined from solving the equation
G29i = pigi-
Note that the previous theorem provides another proof for Proposition 3.5. Note
also that every eigenspace of M has a basis consisting of vectors from &.
Corollary 3.7. With the same notation as the previous theorem

(i) If n is even and M is nonsingular, then

det(M) = det(4 — JC + 2R) - det(A + JC),
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and
L1 a4+ 47! B! —a1)J
T2 gt —ay J@ g
where a = A— JC + 2R and B = A+ JC.
(ii) If n is odd and M is nonsingular, then
det(M) = det(A — JC +2R) - det (q(A + JC) — 2zy™),
and if ¢q =1, then

?

SNt +ah) —N-1z (Nt —a)J
Ml = —yTN! 14+ 247N "1z —yTN-1] ,
TJ(Nt—al) —JN 1z SJ(Nt+ah)J

where oo = A— JC + 2R and N = A+ JC — 2zyT.

Note that if n is odd, M is nonsingular, and q # 1, then M ~! can be obtained
using the formula for the case when ¢ = 1, and it can also be obtained directly
using a proof similar to the proof of Part (i) of Corollary 3.4.

With the same notation as Theorem 3.6, note that if H is nonsingular and n is
even, then

det(M) det(A — JC + 2R)

det(H) det(A — JC)

det(A — JC) - det(I + (A — JC)~1(2R))
det(A — JC)

= 14+ 274 -JC) 0.

If n is odd, then
det(M) det(A — JC +2R)
det(H) ~  det(A—JO)

= 1+207(A-JC) .

Now we study transformations of centrosymmetric matrices. In particular, we
study the effect of reversing the rows/columns of a centrosymmetric matrix on its
eigenvalues and its eigenvectors.

Proposition 3.8. The transformation L defined by L(M) = JM 1is a bijection on
centrosymmetric matrices.

Theorem 3.9. Let H be an n X n centrosymmetric matriz and let v be the number
of linearly independent eigenvectors of H. Then, H and JH share ~ linearly
independent eigenvectors, and X is an eigenvalue of H if and only if A or —\ is
an eigenvalue of JH.

Proof. v linearly independent eigenvectors of H can be chosen to be symmetric
or skew—symmetric. Since JH is also centrosymmetric, then the same thing holds
for JH. Now it is easy to prove that if z is symmetric, then (], z) is an eigenpair
of H if and only if (A, 2) is an eigenpair of JH. Also, it is easy to prove that if
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z is skew-symmetric, then (], z) is an eigenpair of H if and only if (=, z) is an
eigenpair of JH. O

The previous theorem also follows from the proof of Theorem 2.3 and it is im-
portant because it reveals a relationship between the eigenvalues of some Toeplitz
matrices and the eigenvalues of some Hankel matrices. Note that a matrix M is
Toeplitz if and only if JM is Hankel and vice versa.

Corollary 3.10. Let H be an n X n nondefective centrosymmetric matriz. Then
[n/2] eigenvalues of JH are the same as [n/2] eigenvalues of H and the remaining
eigenvalues of JH are the negatives of the remaining eigenvalues of H. Moreover,
H and JH share n linearly independent eigenvectors.

Proof. Let m = |n/2]. By Theorem 2.3, we can determine m linearly independent
skew—symmetric eigenvectors of H and n—m linearly independent symmetric eigen-
vectors. Since JH is also centrosymmetric, then the same facts apply to JH. O
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